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Abstract. Effect size estimates are altered by many factors, including, and 
perhaps most importantly, the shapes of compared distributions. There have 
been many long time advocates of the necessity of graphing raw data to truly 
understand analysis.  Though they were and remain correct, there is little 
evidence in the published literature in psychology that their recommendations 
have been followed.  This paper argues their case, but with the advantage of the 
recent emphasis on effect sizes promoted by, amongst others, the American 
Psychological Association publication guide.  Unlike Null Hypothesis 
Statistical Testing (NHST), effect size estimates are not robust to distributional 
deviations from normality.  As a consequence of effect size sensitivity to 
distributional distortions from normality, it is all the more important to 
understand the qualities of the distributions from which estimates are 
derived.  In this paper, we consider and simulate cases where graphical 
analyses reveal distortion in effect size estimates, and in doing so highlight the 
value of graphing data to interpret effect size estimates.  

1 Introduction 

Graphic approaches to understanding Social Science data lead to insights [1]. Cohen 
[2], echoing the advice given by Tukey [3], suggested that researchers should attempt 
to understand their raw data through graphic representation. Beyond the compelling 
visual examples modelled for interpreting confidence intervals by Cumming and 
Finch [4], there is not strong evidence that his advice has been followed with 
regularity.  Perhaps there is reluctance on the part of researchers, reviewers, and 
editors to learn and consider a perceived myriad of techniques when they feel 
comfortable with an approved set of methods associated with null hypothesis 
statistical tests (NHST).  Furthermore, computational aspects of NHST have been so 
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routinized that data analysis to some could seem like a matter of simply entering the 
data. Historically, an unintended consequence of Box [5] and earlier researchers in 
documenting the robustness of t and F tests to violations of normality may have also 
contributed.  The general message from their studies is that t and F tests are so robust 
that researchers need not concern themselves with the distribution shape of their raw 
data. Therefore, the researcher is presented, on the one hand, with robust techniques 
that are well laid out, as versus, on the other hand, techniques which offer a learning 
curve perceived as steep. 

Things may be ripe for change.  Years of criticism of NHST has led to a greater 
emphasis on effect size measures [6], [7], [8]. Moving this approach into prominence 
could stimulate recognition of the value of graphic approaches, as we will try to 
demonstrate in this paper through the use of simulated and empirical data sets. As 
mentioned, many have tried before to guide researchers towards a more graphic 
approach, but in this current attempt, we have two advantages.  One is from the 
emphasis on effect size, and the second comes through the benefit of hindsight.  With 
hindsight, it is arguable that a graphic approach should 1) emphasize simplicity, 2) 
illustrate common or highly probable examples, and 3) link examples to known 
statistical techniques and descriptors. By simplicity, we mean raw data graphic 
approaches that are not overwhelming, and to which the majority of psychologists 
have been exposed at some point in their education.  There are at least 39 major 
probability distributions [9]. That number alone can be intimidating. The potential 
number of moments for any distribution could perhaps be even more intimidating, 
since, in theory, it is the number of measures sampled minus one. However, by simply 
concentrating on the normal distribution and three major deviations reflected in 
variance, skew, and kurtosis, we argue that many cases in the social sciences are 
covered to the extent that most researchers will see value in graphing.  In certain 
specialized areas (e.g., reaction time measurement), exploration beyond our 
presentation will be and has been undertaken. Means, variance, skew, and kurtosis are 
within the realm of training typical for social scientists, and they are very revealing 
about the structure of raw data for subsequent analysis.  Virtually all researchers are 
intimately familiar with the 1st and 2nd moments, the mean and variance, respectively, 
and they have at the least a passing familiarity with the 3rd and 4th moments, skew and 
kurtosis.  These moments are readily comprehended visually and are often focused on 
in Finance courses as key to describing stock market activity.  All distributions can be 
at least partially understood by these moments. 

The alleged robust nature of NHST can be counterproductive when considering 
effect sizes [5].  Effect sizes are meant to be accurate estimates of the size of a 
phenomenon, and the more accurate and precise the estimate the better.  It turns out, 
however, that effect size estimates are not robust to the very distortions to which a 
statistical significance test supposedly is. Brand, Bradley, Best, and Stoica, [10], [11], 
[12] have spent some effort detailing when effect sizes may or may not be accurate 
reflections of the intended measure, but perhaps the most important situation arises 
with deviations from the normal distribution.  These deviations are most readily 
apparent from graphs.  It is evident with graphs that effect sizes depend very much on 
the underlying distribution assumptions, as we intend to show. Consider variance: 
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Standardized estimates of mean differences are based on estimates of variability, and, 
as a consequence of graphing, researchers may pay attention to variability. 

2 Three Examples of Effect Size Sensitivity 

Variance Manipulation. In the following illustration, the initial or control 
distribution was conceptualized as a distribution of 38 measures with a mean of 10 
and a standard deviation of 2.  A hypothetical manipulation created sets of 
distributions of 38 measures with means of 10.4, 11 and 11.6.  These values 
correspond to Cohen’s effect sizes of .2, .4 and .8.  Standard deviations for each of 
the means in the second set of distributions ranged from .5 to 4. Effect sizes were 
calculated between the standard reference distribution and each of the manipulated 
distributions.  The proportional differences remained approximately the same across 
different effect sizes, so one set of effect size numbers covers all cases.  The effect 
sizes were reduced by 36% from the pooled estimates with the largest SD to an 
increase of 36% with the smallest SD. Accurate measurement is a hallmark of science 
but it may be difficult to obtain with not only error in measurement of means but also 
error in estimating variability. 

 

Fig. 1. A normal control distribution with mean = 10, SD = 2 compared with three distributions 
with a mean of 10.4 (d = .2) and SDs of .5, 2 and 4. The vertical dotted lines show the 
placement of the means.  
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Examination of the graphs in figure 1 show what is happening with robustness and 
a potential inaccuracy of standardized effect sizes.  With graphs it is obvious that the 
differences in effect size are from the increase or decrease in variance. On the one 
hand, increased variability may, with traditional inference testing, result in a failure to 
obtain statistically significant results, whereas, with a decrease, not only is there an 
increase in the probability of statistical significance, but also the reported effect size 
may be exaggerated.  We use “may be exaggerated” because analysis does not stop 
with the graphing of the data. Theory or past findings also matter. A decrease in 
variance could be legitimate if the manipulation does actually shrink variance.  For 
example, nitrous oxide makes virtually all people laugh continuously during its 
application.  On the other hand, it could be an artifact. For example, many 
measurement scales have a limited range and result in a compression of variance.  

 

Scales and Measurement. To understand potential measurement effects, it is worth 
considering the data sets presented in figure 2.  For example, Likert scales may have 
only five, seven, or 10 points, and manipulations that move participants’ ratings 
unidirectionally away from a midpoint are almost certain to create skewed, leptokurtic 
distributions with restricted variability. The graphs presented in figure 2 are based on 
ten point scales, which seemed reasonable at the time of creation.  However 
examination of the three graphs together may raise the questions as to whether or not 
the scales were nuanced enough to adequately discriminate amongst participants. 
Panel A shows love ratings amongst university-aged individuals.  Ratings of love 
average 8.4 and are skewed and leptokurtic.  Ratings of security, with a mean of 8.1 
and similar levels of skew and kurtosis, follow the same pattern (see Panel B).   

 

 

 

Fig. 2. Three raw data graphs showing different levels of deviation from normality to inform 
interpretation. Ratings of love (Panel A), ratings of security (Panel B), and ratings of self-
idealness (Panel C) are presented. 
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The graphs revealed a further point of interest.  There was actually an error in that 
the idealness scale went to 11.  Graphing made this completely evident and showed 
the scale scores had to be reduced by 9%.  With that reduction the mean was 7.5 and 
was different from the love mean.  Thus graphing revealed two things: a clear error, 
and, even without the error, a distribution difference that reflected a less intense 
appraisal of self idealness than ratings of love.  Overall, with a look at the graphs, a 
more complicated appreciation of data is gained in comparison to the simple analysis 
of means. The surprise was with idealness.  This rating was an estimation of how 
ideal each individual estimated themselves for their particular partner (see Panel C). 
The distribution mean was 8.2 but the distribution was mesokurtic (approaching 
normal) and only mildly skewed. Thus individuals were rating themselves as less than 
ideal even though they were intensely in love.  This could be interpreted as modesty 
in estimating one’s own impact on another.  

It is worth noting that Anscombe [13] had some time ago encouraged graphic 
analysis of raw data for the same distributional reasons we discuss.  Anscombe [13] 
presented four distributions that visually were radically different from each other but 
shared equal means and variances.  That paper, at the time, presented a compelling 
argument for graphic understanding of data, but it may not have had the impact it 
deserved for two reasons.  It was written before the emphasis on effect size [6], and 
Anscombe [13] did not manipulate variances.  With variance free to vary and effect 
sizes, as not only prominent metrics, but also demonstratively sensitive to variance 
manipulations perhaps there will be greater appreciation of this type of work. 
 
Bimodal Distribution. Perhaps the most compelling case for the value of graphs 
could occur with bimodal distributions.  In the following illustration, the beginning 
distribution approximates normality, whereas the manipulated distribution 
approximates a bimodal distribution.  The means of the two distributions are the same 
for the simulation.  Under this circumstance, a traditional F test discovers no 
statistically significant difference, and the effect size approaches 0.  An analysis with 
no reference to graphs or higher moments of the distribution would suggest that 
nothing happened.  However, examination of variability and kurtosis reveal 
distributions that differ from each other in important and informative ways.  This 
simulation could model the evaluation of a politician.  The initial description may be 
relatively neutral, and present a sincere, honest, established individual who has a 
family and is interested in serving the ordinary citizens of the country to the best of 
her/his ability.  In figure 3, the ratings are represented by the unimodal normal curve 
depicted with the solid line. After the initial rating, the politician, in the North 
American context, could be identified with the contentious issue of gun control.  The 
issue is potentially divisive enough to create a bimodal distribution which, in this 
case, is depicted with the dotted lines. The increase in variance and the increase in 
platykurtosis associated with the bimodal distribution, so clearly illustrated in figure 
3, indicate that there are at least two groups reacting to this particular issue. 

Examination of figure 3 makes it obvious that knowledge could be furthered by 
identifying two groups of responders, perhaps right wing and more centrist voters.  
The logical follow-up would be to create a more complex design.  Before such an 
observation is trivialized, because we know some factors in this particular example, it 
should be considered that similar distribution changes can occur in drug research, and 
in the evaluation of art, movies and products. 
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Fig. 3. Graph representation of a nonsignificant, 0 effect size comparison where the 
manipulated distribution is bimodal and obviously different from the original normal 
distribution 

3 Conclusion 

The human condition is complex, and the perpetuation of testing one mean against 
another without the thorough graphic examination of the distributions, as we have 
tried to present, needlessly limits the potential of Social science.  At the most 
problematic level, a researcher may simply input data into a program, obtain a 
significance value, and then fail to look at the data distributions.  The hesitation to 
further examine the data can range from a lack of realization of potential insights to 
be gained, to a misunderstanding of the conventions of research.  Such conventions 
suggest that once a significance test fails there is little to be done with the data 
collected.  That view may hold for well developed and understood areas, but it is 
arguably not the case for relatively underdeveloped areas of science. Furthermore, we 
argue, through our examples, that an appreciation of raw data distributions gained 
from graphing is a necessary adjunct to understanding effect size estimates, since 
these estimates are very sensitive to various and common departures from normality.  
This holds at the micro level of one’s particular area and informs theory and 
measurement practice.  At the macro level, involving general reading in one‘s 
discipline, or in new areas, and with important findings, it is necessary to have at least 
the trust, if not the actual graph or some form of evidence, that the author considered 
the raw data distribution form. 
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